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Aminopeptidase N1 is involved 
in Bacillus thuringiensis Cry1Ac 
toxicity in the beet armyworm, 
Spodoptera exigua
Lin Qiu1,*, Songhe Cui2,*, Lang Liu1, Boyao Zhang1, Weihua Ma1, Xiaoping Wang1, 
Chaoliang Lei1 & Lizhen Chen1

Understanding how insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) interact with 
their hosts is crucial to fully explain the molecular bases of Bt specificity and insecticidal activity. 
Previous studies support ATP binding cassette transporters (ABCC2/3) and one cadherin-like protein 
are Cry1Ac functional receptors in the beet armyworm (Spodoptera exigua). In this study, a combined 
one-dimensional gel electrophoresis and immunoblotting approach identified aminopeptidase N 
(APNs) as putative Cry1Ac binding proteins in the midgut brush border membrane of S. exigua larvae. 
Functional analyses by gene silencing of six different S. exigua APN genes (SeAPN1, SeAPN2, SeAPN3, 
SeAPN4, SeAPN5 and SeAPN6) showed that only suppression of SeAPN1 resulted in decreased larval 
susceptibility to Cry1Ac toxin. These results support that SeAPN1 plays important functional role in 
Cry1Ac toxicity in S. exigua.

The crystal (Cry) proteins from the bacterium Bacillus thuringiensis (Bt) are a diverse group of insecticidal pro-
teins employed for the control of numerous pest species from different insect orders1. These Cry proteins are 
active ingredients in Bt sprayable formulations, and cry genes have been transformed into transgenic plants for 
resistance to insect attack. Understanding how Cry toxins interact with their insect hosts is crucial to fully explain 
the molecular bases of specificity and to develop efficient resistance management tools.

The mode of action of Cry toxins in lepidopteran larvae has been thoroughly investigated2. Once the par-
asporal crystalline bodies containing the Cry proteins are ingested by a susceptible insect, they are solubilized to 
a protoxin form in the alkaline digestive fluids, and then processed by midgut proteases to an active toxin core. 
Upon traversing the peritrophic matrix, the activated toxin core binds to specific binding sites on the brush bor-
der membrane of the midgut. Binding results in oligomerization and formation of toxin pores that lead to osmotic 
cell death, compromising the midgut epithelial barrier and allowing resident bacteria to invade the hemocoel to 
cause septicemia and death of the insect. A number of proteins have been proposed as receptors for the Cry1A 
family of proteins, including aminopeptidase N (APN), cadherin, ABC transporters and alkaline phosphatase3–7.

The beet armyworm, Spodoptera exigua, has recently become a major economic cotton pest in China8–11, 
probably due to the reduced pesticide usage attributed to adoption of Bt cotton producing the Cry1Ac protein. 
Previous studies reported that knockdown of ABCC transporter 2/3 and one cadherin-like protein in S. exigua 
larvae decreased their susceptibility to Cry1Ac12,13. In the current work, we used a combined one-dimensional 
(1D) gel electrophoresis and immunoblotting approach to identify APNs as Cry1Ac binding proteins in the mid-
gut of S. exigua larvae. Using functional assays by RNA interference (RNAi) to individually silence expression of 
known S. exigua APN genes, we document the identification of APN protein relevant to Cry1Ac intoxication in 
that insect pest.
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Results
Binding proteins of Cry1Ac of S. exigua BBMV. Ligand blots of midgut brush border membrane pro-
teins from S. exigua larvae. Figure 1a identified two prominent Cry1Ac-binding protein bands of about 110- and 
130-kDa in size, respectively, which were numbered as bands 1 and 2 (Fig. 1b, panel 2). The specificity of the anti-
Cry1Ac antisera used for ligand blotting was confirmed by the lack of cross-reactivity in blots with no Cry1Ac 
(Fig. 1b, panel 1). The Cry1Ac binding bands were excised and submitted to LC-MS/MS analysis and protein 
database searching. Parameters used for protein identification included at least two unique peptides detected and 
molecular weight similar to the Cry1Ac protein bands. The list of detected proteins fulfilling these conditions in 
each Cry1Ac-binding band is presented in Supplementary Table S1. Among all these proteins, the most abundant 
in both bands 1 and 2 were N-aminopeptidases (APNs) from S. exigua (Table 1). Consequently, we focused our 
analyses on testing the functional Cry1Ac-receptor role of S. exigua APNs (SeAPNs).

Figure 1. SDS-PAGE analysis of BBMV solubilized protein from S. exigua and ligand blotting with 
Cry1Ac. (a) Total protein silver staining detection of separated S. exigua BBMV proteins. (b) S. exigua BBMV 
proteins binding Cry1Ac in ligand blots, as detected with Cry1Ac antisera. Panel 1, blotting assay without 
Cry1Ac, Panel 2, blotting assay with Cry1Ac. Arrows indicate detected Cry1Ac-binding protein bands.

Banda
Accession 
numberb PepCount

Unique 
PepCount MW Top ranking match Species

1 Q4G6A5 35 26 114.9 Midgut class 1 
aminopeptidase N Spodoptera exigua

2 Q5UVJ2 28 25 113.9 Aminopeptidase N Spodoptera exigua

Table 1.  Most abundant Cry1Ac binding proteins identified in BBMV from Spodoptera exigua. aBand 
number corresponding to Fig. 1b, panel 2. bUniprot database accession number.
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Functional Cry1Ac receptor assays of APNs in S. exigua. Phylogenetic analyses identified six SeAPN 
genes (SeAPN1 to SeAPN6) belonging to the same number of APN families14, which were selected for further test-
ing. To test their putative Cry1Ac receptor role, we used a gene silencing approach by RNA interference (RNAi) 
through ingestion of double-stranded RNA (dsRNA) targeting each SeAPN gene. After ingestion of purified dsR-
NAs specific to SeAPN1, SeAPN2, SeAPN3, SeAPN4, SeAPN5 or SeAPN6 for 48 h, the transcript levels for these 
genes were significantly reduced by 53%, 62%, 79%, 80.6%, 81% and 53%, respectively, when compared to larvae 
fed on dsEGFP or water as controls (Fig. 2). Subsequent feeding larvae exposed to dsRNA to a diet overlaid with 
3 μ g/cm2 of Cry1Ac resulted in 83% and 68% mortality in the water and dsEGFP controls, respectively. In con-
trast, mortality was 32% (dsAPN1), 67% (dsAPN2), 68% (dsAPN3), 82% (dsAPN4), 96% (dsAPN5), and 62% 
(dsAPN6) in the experimental treatments (Fig. 3). Statistical analyses (ANOVA, P <  0.05) revealed that the only 
treatment affecting Cry1Ac susceptibility was feeding on dsSeAPN1 when compared to the water or dsEGFP 
treatments.

Figure 2. RNA interference knockdown of SeAPN transcripts in S. exigua larvae. Relative levels of SeAPN 
transcripts were determined by qRT-PCR of S. exigua larvae fed artificial diet overlaid with either water or 
dsEGFP as controls, or dsRNA targeting each specific SeAPN. The SeGAPDH and SeRpL10 housekeeping genes 
were used to normalize transcript levels. Asterisks indicate significant differences (ANOVA followed by Tukey’s 
HSD posthoc test, P <  0.05).

Figure 3. Corrected mortality by Cry1Ac in S. exigua larvae treated with dsRNA. Larvae were fed on diet 
overlaid with dsRNA targeting EGFP, SeAPN1, SeAPN2, SeAPN3, SeAPN4, SeAPN5 or SeAPN6, and then they 
were exposed to diet contaminated with 3 μ g/cm2 of Cry1Ac. Bars denotes standard error of the mean calculated 
from five replicates. Different letters on top of bars indicate significant differences (ANOVA followed by Tukey’s 
HSD posthoc test, P <  0.05).
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Discussion
Aminopeptidases N (APNs) are a class of metalloenzymes widely present in the apical membranes of the insect 
midgut that remove neutral amino acids from the N-terminus of polypeptides4. A number of studies support 
APNs as binding proteins for Cry toxins in lepidopteran and dipteran insects15–21. For instance, expression of a 
Manduca sexta APN gene in transgenic Drosophila resulted in susceptibility to Cry1Ac toxin22. Silencing of APNs 
expression results in reduced susceptibility to Cry1C in S. litura23, to Cry1Ac in H. armigera24, or to Cry4Ba in  
A. aegypti25. Moreover, resistance to Cry1Ac was correlated with down-regulation and deletion mutations in 
APN1 genes in Trichoplusia ni and H. armigera, respectively26,27. Very recently, APN1 has been identified as a 
Cry1Ac receptor in H. zea28, while APN1 and APN2 genes were reported as Cry11A receptors in A. aegypti20,29. 
Two partial APN fragments from Anopheles gambiae had inhibitory effects on the larval susceptibility to Cry11B 
toxin19.

In S. exigua, a total of six APN genes were identified in a previous study14. Silencing of SeAPN1, SeAPN3 or 
SeAPN6 expression was shown to reduced susceptibility to Cry1Ca14. Moreover, S. exigua resistance to Cry1Ca 
was associated with lack of expression of a SeAPN1 gene30. In the present work, we present the identification of 
SeAPN1 as a Cry1Ac receptor, and data supporting that other SeAPNs do not serve as receptors for this toxin. 
Together with previous reports, these data support that SeAPN1 is a common functional receptor for Cry1Ac and 
Cry1Ca toxins30. This observation would suggest that cross-resistance between Cry1Ac and Cry1Ca in S. exigua is 
likely. In agreement with this hypothesis, cross-resistance was observed between Cry1Ab and Cry1Ca in S. exigua 
larvae after selection with toxin31. The possible reason of this cross-resistance might be that the two toxins share 
same binding site of SeAPN1, while further work would be needed to test this hypothesis, sharing of binding pro-
teins between Cry1 and Cry1Ca proteins would have important consequences for resistance management tactics, 
as these proteins have been proposed as candidates for gene pyramiding in transgenic crops32,33.

Our data also clearly support that SeAPN1 is the only SeAPN functioning as a Cry1Ac receptor. Other reports 
also support APN1 proteins as receptors for Cry1Ac in T. ni27, M. sexta34 and H. armigera26. However, there is 
evidence for alternative APNs interacting with Cry1Ac in other lepidopteran insects. For instance, APN2 binds 
Cry1Ac in H. armigera35, but not in Lymantria dispar36, M. sexta, P. xylostella or B. mori16,37,38. Both APN3 and 
APN5 can bind Cry1Ac in H. armigera39 and P. xylostella40, but their involvement in Cry1Ac resistance remains 
to be confirmed. In contrast, there is no evidence supporting a Cry1Ac receptor role for APN4, APN6, APN7 or 
APN8 proteins. Specific glycosylation or sequence attributes may explain this specificity of Cry1Ac for some APN 
proteins.

In our combined ligand blotting and MS/MS analyses we identified two protein bands as SeAPN1 and 
SeAPN3. In addition to SeAPNs, we also detected other proteins in the Cry1Ac-binding bands that may spe-
cifically interact with Cry1Ac. For example, S. exigua cadherin peptide was detected in band 1, albeit with low 
probability, and cadherins have been demonstrated to act as Cry1Ac receptors in previous studies12,41, The func-
tional role for these alternative proteins needs to be examined. Based on relative abundance and the results from 
gene silencing, the present work identifies SeAPN1 as the only SeAPN acting as a functional Cry1Ac receptor in 
S. exigua larvae. The potential sharing of this receptor needs to be further explored to evaluate risks of resistance 
evolution for pyramided Cry1A and Cry1Ca genes in transgenic crops.

Materials and Methods
Insect rearing, midgut dissection and BBMV preparation. S. exigua larvae were collected at the cam-
pus greenhouse of the Huazhong Agricultural University in June 2012 and reared without exposure to Cry toxins. 
Insects were maintained at 28 ±  1 °C, a 14 L:10D photoperiod, and 70–80% relative humidity. Larvae were reared 
on an artificial diet42 and adults fed on 10% sucrose. Actively feeding fourth-instar larvae were chilled for 5 min-
utes on ice and dissected, the midgut tissue was cleaned from trachea, Malpighian tubules, peritrophic membrane 
and food bolus and rinsed briefly in ice-cold MET buffer (300 mM Mannitol, 17 mM Tris-HCl, 5 mM EGTA, pH 
7.5). Dissected midguts were stored frozen at − 80 °C until used.

BBMV were prepared from the dissected midguts by the differential magnesium precipitation method43. 
Briefly, midguts were homogenized in nine volume of midgut weight MET buffer containing 1 mM 
Phenylmethanesulfonyl fluoride (PMSF) using a tissue homogenizer, an equal volume of 24 mM MgCl2 was 
added and samples were incubated on ice for 15 min before centrifugation at 2,500 g for 15 min. This step was 
repeated three times, and the combined supernatant was collected and centrifuged at 30,000 g for 30 min. The 
final BBMV pellet was resuspended in ice-cold buffer (10 mM HEPES, 130 mM KCl, 10% glycerol, pH 7.5) con-
taining 1 mM PMSF43. Protein concentration was determined by the method of Bradford44 with bovine serum 
albumin (BSA) as a standard.

Ligand blotting and mass spectrometry. Proteins of S. exigua BBMV (10 μ g) were separated by 8% 
SDS-PAGE and transferred 25 minutes to PVDF filters at 15 V constant voltage. After blocking in PBST buffer 
(135 mM NaCl, 2 mM KCl, 10 mM Na2HPO4, 1.7 mM KH2PO4, pH 7.5, 0.1% Tween-20) containing 5% (w/v) 
skim milk for 2 h, filters were incubated with 0.3 μ g/ml of activated Cry1Ac for 2 h at room temperature. A 
control experiment was performed without incubation with Cy1Ac toxin. The filters were washed in PBST 
buffer three times followed by probing with a 1:3,500 dilution of polyclonal antibody to Cry1Ac for 2 h. After 
washing as above, the membranes were incubated in 1:5,000 diluted goat anti-rabbit IgG horseradish peroxi-
dase (HRP)-linked antibody. The filters were developed with an ECL kit (Fermentas/Thermo Fisher Scientific, 
Waltham, MA USA) following manufacturer’s recommendations.

After ligand blotting, the gel bands observed to bind Cry1Ac were excised and rinsed in destaining solution 
(30% acetonitrile/100 mM NH4HCO3). The gel bands were then incubated with 100 mM Dithiothreitol (DTT) 
at 56 °C for 30 minutes, treated with 200 mM indole-3-acetic acid (IAA) after abandon supernatant, and then 
incubated with 100 mM NH4HCO3 then remove liquid. As a last step, samples were treated with 100% acetonitrile 
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for 5 minutes and freeze dried before digestion with 2.5–10 ng/μ g trypsin for 24 hours at 37 °C and analysis by 
liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) at the Shanghai Life 
Science Research Institute (China Academy of Sciences, Shanghai, China). The mass spectrometry results were 
queried to the uniprot database using the Mascot2.2 software.

RNA interference of SeAPNs. The pET-2P plasmid was used to produce double-stranded RNAs tar-
geting SeAPNs (dsSeRNA) and EGFP (dsEGFP), as described by Ren et al.14. The primers used in cloning the 
dsRNA fragments are listed in Table 2. Amplicons were purified and digested with restriction enzymes (Table 2), 
and then ligated into the previously digested pET-2P, to generate pET-2P/SeAPN and pET-2P/EGFP dsRNAs 
plasmids. Correct inserts were confirmed by sequencing at Genscript Biology Company, Nanjing, China. For 
dsRNA expression, 200 ng of plasmid DNA was transformed into Escherichia coli HT115 (DE3) competent 
cells, positive clones were cultured in 500 ml LB medium and induced to express dsRNA by adding 0.4 mM 
isopropyl-D-thiogalactoside (IPTG). The same methods described by Timmons et al.45 and Dong et al.46 were 
used to extract dsRNA from aliquots of bacteria, and the size of dsRNA was confirmed by electrophoresis on a 
1% agarose gel.

Bioassay. Newly hatched S. exigua larvae were fed artificial diet overlaid with 50 μ g/cm2 of dsSeAPNs, dsEGFP 
or water for 48 h at 27 °C. Larvae were then transferred to wells of a 6-well plate where they were allowed to feed for 
7 days on artificial diet contaminated with 3 μ g/cm2 of activated Cry1Ac toxin (equivalent to the LC70 value accord-
ing to preliminary experiment), or on diet contaminated with water as a control. A total of 120 larvae were used 
for five replicated bioassays for each treatment. To monitor the silencing efficiency for each target gene, 15 larvae 
whole body from each replicate, 3 replicates for each dsRNA treatment were used to extract total RNA. The relative 
differences of target gene expression level were detected by qRT-PCR with the primers presented in Table 2, which 

Primer Primer Sequence (5′-3′)

Primers for dsRNA Synthesizing

SeAPN1 Fw actGAATTCCCCTCAACGACCATTCACTATC1

SeAPN1 Rv actGAATTCGAAGGAGTCGGATAGCAAGGA1

SeAPN2 Fw actGAATTCTATTGGCAGTGGTGAAGAGC1

SeAPN2 Rv actGAATTCCATAACAACAGTCTTACAGGAACC1

SeAPN3 Fw actGCGGCCGCCCGAATGACAGAACATCTCCTT2

SeAPN3 Rv atcACTAGTTATCACCCACCGAGATGGAC3

SeAPN4 Fw actGAATTCTTCACAAATCGGCTTAGGAGG1

SeAPN4 Rv actGAATTCCGAGACGAAAACAACATTAAATTG1

SeAPN5 Fw actGAATTCTGGCTACTTGGATGAGGAAGG1

SeAPN5 Rv actGAATTCGGTAATGAACTGTTCCAGTGATCA1

SeAPN6 Fw actGAATTCTTCAGGAATCTTGGGACCG1

SeAPN6 Rv actGAATTCGATAGCGTTCTTTGCTGTTGC1

Performing the qRT-PCR

SeAPN1 qRT-PCR Fw GGGTGTACTGCGGTGGTCTT

SeAPN1 qRT-PCR Rv CAACCTGCTGCACCAAGCAT

SeAPN2 qRT-PCR Fw CTGGTGTACTGCGCTGGTCT

SeAPN2 qRT-PCR Rv TGCTCGCTGTGATCTTGGCT

SeAPN3 qRT-PCR Fw CGCTGCTGTCTCAGGCAATG

SeAPN3 qRT-PCR Rv GCTGCATTCCTCAACCTGGC

SeAPN4 qRT-PCR Fw AATGCATACGGCATCGGCAC

SeAPN4 qRT-PCR Rv ACTGTCGAACACAGCCCCAA

SeAPN5 qRT-PCR Fw CTGTGAGGGTCTCCGAGCTG

SeAPN5 qRT-PCR Rv TGCATCCCAGGGCTCTCAAC

SeAPN6 qRT-PCR Fw ACGGTCTTGCTGACCACGTT

SeAPN6 qRT-PCR Rv AGTTCCGGCAGAAGCCCAAT

SeGAPDH qRT-PCR Fw CTGAGGAACAGGTCGTGTCA

SeGAPDH qRT-PCR Rv TTCAGAGAGATACCGGCAGCA

SeRpL10 qRT-PCR Fw CTCTGCGTCGTGCCAAGTTC

SeRpL10 qRT-PCR Rv CCTCACGCAGCTTCTCGAAT

Table 2.  Nucleotide primers used to amplify cDNA fragments for dsRNA synthesis, and for quantitative 
real-time PCR analysis of RNAi knockdown. 1Underlined sequence indicates position of the EcoR I 
endonuclease site. 2Underlined sequence indicates position of the Not I endonuclease site. 3Underlined sequence 
indicates position of the Spe I endonuclease site.
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were designed in the NCBI profile server (http://www.ncbi.nlm.nih.gov/tools/primer-blast). The SeGAPDH and 
SeRpL1047,48 genes were used as reference for normalization. The qPCR protocol followed was described elsewhere41.

Data analysis. Abbott’s formula was used to calculate the larval corrected mortalities49, means and vari-
ances of treatments were analyzed by one-way ANOVA using SPSS for Windows (SPSS 18.0, Chicago, IL, USA). 
Quantitative expression data were analyzed by the 2−∆∆Ct method50.
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